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1 Introduction and Motivation
1.1 Personal Robotics > General Robotics
The next step for household service robots is the ability to internal-
ize the user’s unique routines and predict when and where tasks
will be asked. Additionally, the robot must hold understanding of
external events such as calendar events and weather events to fur-
ther aid in the prediction of tasks that the user will request.
This is a very interesting and under-researched technical problem,
which requires the robot to 1) understand the semantics of tasks,
2) remember recurring patterns, and finally 3) build permanent
habits that mirror their users.
I propose a novel cognitive architecture combining multi-modal
graph neural networks, LLM semantic embeddings, and continual
learning practices that not only do everything described above, but
can also generalize to all types of tasks and habits (i.e., not limited
by task primitives).

2 Overview of Architecture
The proposed architecture has three main components that allow
it to learn habits frommulti-modal data. We consider the following
factors when learning habits:

• Home state: e.g., Messiness level of the kitchen, positions
of relevant household objects, messiness of the floor, etc.

• Time state: Day of the week, time of task request, etc.
• External state: Calendar events of the day, weather, etc.

Each of these require unique embeddings to be recognized by the
GNN. Therefore, we utilize different pipelines for each of these
factors to extract relevant informations from each state, as can be
seen below.

Figure 1. Note that the red pathway is only active during training step.

The rest of this report will deal with each of these blocks and

discuss the current planned methodology for implementation, as
well as justification of their inclusion.

3 Task Understanding through LLMs
Each episode of data collection for GNN training will begin with
the user requesting a task. The robot will also have access to a se-
mantic map of the entire home environment, which will be created
at the very beginning through semantic SLAM procedures.

Tasks requested by the user are then encoded as nodes within
the memory graph and must capture the semantic nature of the
instruction. To achieve robust task understanding, I will em-
bed these commands using a pre-trained language model, such
as Sentence-BERT or text-embedding-ada-002, producing dense
semantic representations that preserve task similarity in the em-
bedding space.

Each task description 𝑡𝑖 is transformed into a vector 𝑥 task
𝑖

∈ R𝑑
via:

𝑥 task𝑖 = LLM_Embed(𝑡𝑖 )
During inference, the GNN will receive these embeddings as node
features, allowing the architecture to relate current and past tasks
in a semantically grounded way.

Finally, each task will be added to a task list, where each em-
bedding now becomes an allowable and possible future action for
the robot to perform. This approach allows the robot to maintain
safety by not hallucinating brand new actions, and also allows for
generality, since the user’s past requests are what builds up the
allowance list.

4 Perception: Embedding Home State Snapshots
When a task is requested, the robot will move to the site of the task
(provided by the LLM embedding), and before any work is done,
scan the entirety of the area using its camera. Understanding this
captured household context requires embedding the physical state
of the environment into a compact but relevant representation.

To quantify home conditions like “messiness,” I will deploy
computer vision pipelines that extract features such as:

• Number of relevant objects (via YOLOv8)
• Floor coverage ratio (from depth segmentation)
• Surface clutter score (entropy-based texture analysis)
• Ambient metrics (light level, noise, temperature)
These features will then be aggregated into a vector 𝑥state

𝑗
∈ R𝑘 ,

which is the embedding for the home state node. Normalization of
this vector is still something that I am figuring out. This approach
allows the graph neural network to reason over states of the home
as first-class entities, correlated with task behavior over time.

5 Heterogeneous Graph Neural Networks as a Habit
Learning Agent
5.1 HGNNs and Multimodality
Heterogeneous Graph Neural Networks (HGNNs) extend tradi-
tional GNNs to operate on graphswithmultiple types of nodes and



edges. HGNNs account for this heterogeneity by learning type-
specificmessage-passing functions and using relational aggre-
gators that distinguish between interaction types.

In my proposed architecture, HGNNs are crucial for integrating
multi-modal data streams into a unified memory graph. Specifi-
cally, we model nodes for task requests (text-based, semantically
embedded) and home states (numerical perceptual features), each
with distinct feature spaces and temporal behaviors. By leveraging
models such as Relational GCN or Heterogeneous Graph Trans-
former (HGT), we allow the network to learn interaction patterns
between semantically dissimilar node types, enabling it to predict
user habits and future task requests based on both symbolic and
perceptual context.

5.2 Training Through Sub-graphs

As a high-level overview, the robot trains by taking each task node,
and taking all other nodes connected by 2 degree separations, then
using that sub graph as 1 episode for training.

Formally, if we let 𝐺 = (𝑉 , 𝐸) denote the heterogeneous mem-
ory graph containing task, home-state, time, and external nodes,
then for every task request 𝑣 task

𝑖
∈𝑉 we extract a two-hop induced

sub-graph G𝑖 = (V𝑖 , E𝑖 ), where V𝑖 = {𝑣 ∈ 𝑉 | dist(𝑣, 𝑣 task
𝑖

) ≤ 2}.
The set D = {(G𝑖 , 𝑦𝑖 )}𝑁𝑖=1 constitutes the training dataset, with
label 𝑦𝑖 pointing to the *true* future-task node among the allowed
task list T defined in sections 3 and 4.

The HGNN is trained to minimize a classification loss:

L =
1
𝑁

𝑁∑︁
𝑖=1

CE(HGNN(𝐺𝑖 ), 𝑦𝑖 )

where CE is the cross-entropy loss between the predicted logits
and the true task node. This approach ensures that the model
learns to associate environmental and temporal contexts with the
most likely task, enabling anticipatory behavior. Over time, as the
robot collects more episodes, themodel incrementally improves its
predictive accuracy through accumulated subgraph supervision.

5.3 Reinforcment Learning

Each time a task is suggested by the GNN, I will run a verification
step through the user, who will simply approve or deny the sug-
gestion. This does two things: first, it ensures safety by making
sure the robot doesn’t do anything that the user doesn’t expect or
doesn’t want. Secondly, it can augment the training process by
helping the model understand better what the user wants through
a reinforcement learning step. This is also something that I am still
figuring out how to incorporate into the general training process.

6 Habits as a Continual Learning Problem
Wemust also approach this problem from a continual learning per-
spective. This can be done naively by converting every new task
request into a local two-hop subgraph that flows into the exist-
ing HGNN, then retraining during off-peak hours. However, this
becomes unfeasible as the user lives long-term with the robot, ac-
cumulating a very large amount of data over years. Instead, we
can train on mini-batches that mix these fresh subgraphs with a
compact rehearsal buffer of past exemplars, while regularisation
(Elastic-Weight Consolidation) and logit-level knowledge distilla-
tion protect parameters and decision boundaries vital to earlier

habits. Plasticity is confined to lightweight adapter modules in-
serted in each HGNN layer, so new behaviours can be learned
without overwriting core representations.

Let {G𝑡 }∞𝑡=1 be the time-ordered stream of two-hop sub-graphs
arriving as the user performs new tasks. I can then update the
HGNN online in mini-batches B𝑘 drawn from two sources:

1. Recent tasks: the latest sub-graphs G𝑡 collected since the pre-
vious update. (e.g., over the last 24h)

2. Rehearsal buffer M: a bounded memory of exemplar sub-
graphs selected by reservoir sampling (Chaudhry, 2019). Af-
ter processing each G𝑡 , we insert it into M with probability
|M|/(seen + 1), ensuring an unbiased snapshot of the entire
history.

Periodic consolidation. During low-demand hours the robot
performs offline consolidation: it re-trains on M ∪ R, where R
are sub-graphs generated by the HGNN itself (contrastive pseudo-
replay). This boosts robustness without increasing on-boardmem-
ory.

7 Task Expert Through VLAs
Thanks to rapid advances in open-source robot VLAs and datasets,
we can perform the suggested task by the GNN through the robot
using the VLA as a task expert. We feed in the semantic task de-
scription, move to the location using semantic mapping, then run
the actions using the VLA.
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